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Abstract— In this paper, | implemented the embedded zerotree
wavelet algorithm(EZW), which is a simple, yet remarkably
effective, image compression algorithm. The experiment is done
on a set of standard images and the results show the good per-
formance of this algorithm compared to some other compression
scheme. EZW has proven to be a very effective image compres-
sion method based on the mean-square error(MSE) distortion
measure. However, the MSE does not guarantee preservation
of good perceptual qualities in the decoded image, especially
at low bit rates. Therefore, the improvement is done to the
EZW by implementing a perceptually-tuned embedded zerotree
image codec(PEZ) which introduces a perceptual weighting to
the wavelet transform coefficients prior to EZW encoding. The
perceptual weights for all subbands are computed based on
the just noticealbe distortion(JND) thresholds for uniform noise.
Coding results shown in this paper illustrates the performance
of this improevment.

Index Terms—wavelet transform, embedded zerotree coding,
peak signal to noise ratio(PSNR), perceptual-tuned zerotree
image codec

I. INTRODUCTION
A. Image compression using wavelet

Uncompressed multimedia(graphics, audio and video) data
requires considerable storage capacity and transmission band-
width. Despite rapid progress in mass-storage density, proces-
sor speeds, and digital communication system performance,
demand for data storage capacity and data-transmission band-
width continues to outstrip the capabilities of available tech-
nologies. The only solution is to compress multimedia data
before its storage and transmission, and decompress it at the
receiver for play back. There are two ways of classifying
compression techniques: (a) Loeeless vs. Lossy compression;
(b) Predictive(DPCM for example) vs. Transform coding.
Over the past several years, the wavelet transform has gained
widespread acceptance in signal processing in general, and
in image compression research in particular. The principle
of the wavelet transform is to hierarchically decompose an
input signal into a series of successively lower resolution
reference signals ans their assiciated detail signals. At each
level, the reference signal and the detail signal contain the
information needed to reconstruct the reference signal at the
next higher resolution level. Efficient image coding is enabled
by allocating bandwidth accoeding to the relative importance
of information in the reference and detail signals and then
applying scalar or vector quantization to the transformed data
values.

There are several ways wavelet transforms can decompose
a signal into various subbands. These include uniform decom-
position, octave-band decomposition, and adaptive or wavelet-
packet decomposition. Out of these, octave-band decompo-

sition is the most widely used. This is a non-uniform band
splitting method that decomposes the lower frequency part into
narrower bands and the high-pass output at each level is left
without any further decomposition. Figure 1 shows the various
subband images of a 3-level octave-band decomposed Lena
using the 9/7 biorthogonal wavelet. Over the past few years, a

Fig. 1.

3 level wavelet decomposition of Lenna

variety of novel and sophisticated wavelet-based image coding
schemes have been developed. These include EZW, SPIHT,
SFQ, CREW, EPWIC, SP, PEZ, Second generation image
coding, Image Coding using Wavelet Packets, Wavelet Image
Coding using VQ, and Lossless Image Compression using
integer Lifting. More and more such innovative techniques are
still being developed. In this paper, | only implemented the
most original algorithm EZW to do the image compression
and then explored the improvement scheme PEZ. The result
and the performance are shown in the following section.

B. Embedded Zerotree Wavel et(EZW) Compression

In octave-band wavelet decomposition, shown in Figure
2, each coefficient in the high-pass bands of the wavelet
transform has four coefficients corresponding to its spatial
position in the octave band above in frequency. Because of
this very structure of the decomposition, Lewis and Knowles
in 1992 were the first to introduce a tree-like data structure to
represent the coefficients of the octave decomposition. EZW is
based on 2 hypothesises: the first is that if a wavelet coefficient
at the location of the coarse level is insignificant with respect
to a given threshold 7', then all the wavelets coefficients at the
same location of higher level are most likely to be insignificant
with respect to the same threshold. This hypothesis determine



the ZeroTree structure and this hypothesis is always correct in
practical images. Another hypothesis is the larger wavelet co-
efficient is more important than the smaller one. From Figure
1 we see that the wavelet transform tends to concentrate the
mose energy to the coarsest level, thus the second hypothesis
determine the scanning scheme in EZW algorithm which is
zig-zag scanning(Figure 2).
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Fig. 2.

Later, in 1993 Shapiro[1] built an elegant algorithm for
entropy encoding called Embedded Zerotree Wavelet(EZW)
algorithm. The zerotree is based on the hypothesis that if
a wavelet coefficient at a coarse scale is insignificant with
respect to a given threshold T, then all wavelet coefficients
of the same orientation in the same spatial location at a finer
scales are likely to be insignificant with respect to T. Many
insignificant coefficients at higher frequency subbands(finner
resolutions) can be discarded. This results in bits that are
generated in order of importance, yielding a fully embedded
code. The main advantage of this encoding is that the encoder
can terminate the encoding at any point, thereby allowing a
target bit rate to be met exactly. Similarly, the decoder can
also stop decoding at any point resulting in the image that
would have been produced at the rate of the truncated bit
stream. The algorithm produces excellent results without any
pre-stored tables or codebooks, training, or prior knowledge
of the image source.

C. Perceptual-tuned Embedded Zerotree codec(PEZ)[ 2]

For an image the ultimate reciever is the human visual
system, and image perception is affected by its sensitivity and
masking properties. However, most of the existing methods for
image coding are designed to minimize tractable distortion
criteria such as the MSE between the images at the input
and output of the codind system. Minimizing such distortion
measures does not necessarily guarantee preservation of good
perceptual quality of the reconstructed images and may re-
sult in visually annoying artifacts despite the potential for a
good signal-to-noise ratio(SNR). The block diagram of PEZ
method is shown in Figure 3. After the wavelet pyramid
decomposition, the coefficients in each band are multiplied
by the perceptual weighting factor derived for this band. The
resulting set of coefficients is then encoded using EZW. At
the decoder, the perceptually-weighted transform coefficients
are first decoded followed by the inverse of the perceptual
weighting operation. Subsequently, the reconstructed image is
produced by the inverse wavelet pyramid transform.
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Fig. 3. the block diagram of perceptually-tuned EZW

A measure commonly used to quantify perceptual distortion
is the Minkowsky metric:

N
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Where z; ,(r, ¢) is the subband coefficient located at position
(r,e) in band (Z,0)(l represents the level, o represents the
orientation), &;,(r,c) is the corresponding coefficient in the
wavelet pyramid representation of the decoded image, ¢;,,(r, ¢)
denotes the just noticeable detection threshold for a distortion
at the location under consideration, and N denotes the number
of pixels in the image.

There is a variety of models to compute ¢;,,(r,c). In this
project, | just chose ¢;,,(r, c) = t;,, which are the just notice-
able distortion(JND) thresholds for uniform noise injected in
subband [, o of a newtral gray level image. The JND thresholds
t1,, for the 3 level pyramid are shown in Table I.

Orientation level
1 2 3
0 0.33
1 8.33 1.24 | 0.50
2 10.11 | 3.50 | 0.66
3 6.57 1.39 | 0.50
TABLE |
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D. Paper Organization

Section Il discusses the main method implemented in this
project which includes the wavelet basis, the procedure of
EZW and the pseudo code of the algorithm, the procedure of
PEZ. Section Il presents the experimental results for various
rates and for various standard test images. A comparison
between EZW and PEZ is done and a discussion follows each
results is also presented in this section. The paper concludes
with Section IV.

Il. METHODS
A. wavelet basis choosing

Many issues relating to the choice of filter bank for image
compression remain unresolved. Constraints on filter bank



include perfect reconstruction, finite-length, and the regularity
requirement that the iterated lowpass filters involved converge
to continuous functions. According to [3], it shows that the 9/7
biothogonal wavelet filter banks has a very good performance
for wavelet image compression.They have good localization
properties as well as their summetriy allows for simple edge
treatments. They also produce good results empirically since
the original paper[1] on EZW is using this wavelet basis.
Moreover, using properly scaled coefficients, the transforma-
tion matrix for a discrete wavelet transform obtained using
these filters is so close to unitary that it can be treated as
unitary for the purpose of lossy compression. Therefore, |
implemented this wavelet basis too in this project.

B. Procedure of EZW

The EZW algorithm is based on four key concepts:
1l)a discrete wavelet transform or hierarchical subband
decomposition, 2)prediction of the absence of significant
information across scales by exploiting the self-similarity
inherent in images, 3)entropy-coded successive-approximation
quantization, and 4)universal lossless data compression which
is achieved via adaptive arithmetic coding.

The procedure of EZW is:

1. discrete wavelet transform to a given image
2. encoding a coefficient of the
map(DominantPass).

« A wavelet coefficient z on the Dominant List is said to be

insignificant with respect to a given threshold T if|z| <
T.

e 4 simbols are used: ZTR(zerotree root);lZ(isolated
zero);NEG(negative significant);POS(positive
significant).

« For each coefficient coded as significant(POS or NEG),
put its magnitude on the Subordinate List and remove it
from the Dominant List.

The flow chart of this procedure is shown in Figure4. 3.
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Fig. 4. Flow chart for encoding a coefficient of the signifcant map

subordinate pass(also called refinement pass).

« Provide one more bit on the magnitudes on the Subordi-
nate List as follows:

— Halve the quantizer cells

— If magnitude is in upper half of old cell, provide ”1”

— If magnitude is in lower half of old cell, provide ”0”

« Entropy code sequence of 1’s and 0’s

Stop when bit budget is exhausted. Encoded stream has
embedded in it all lower-rate encoded versions. Thus, encod-
ing/decoding can be terminated prior to reaching the full-rate
version.

C. EZW Encoder Pseudocode
The pseudocode implemented in this project for the embed-
ded zerotree coding is shown in Table II.

TABLE Il
PSEUDOCODE FOR EZW CODING

Initialization
To = ofloor(log2(maz(coef fs)))
k=0
Dominant List=All coefficients
Subortinate List=[]

SignificantMap
for each coefficientz in the Dominant List
if |z| > Tp,
ifz>0
set symbol POS
else
set symbol NEG
else if z is non-root part of a zerotree
set symbol ZTD(ZeroTree Descendant)
if z is zerotree root
set symbol ZTR
otherwise
set symbol 1Z

DominantPass
if symbol(x) is POS or NEG(it is significant)
put symbol(x) on the Subordinate List
Remove z from the Dominant List

SubordinatePass
for each entry symbol(x) in Subordinate List
if value(x)e Bottom Half of [T%,27%]
output 70"
else
output 1"

Update
Tyt1 = Ty/2
k=k+1
Go to SignificanceMap

D. Perceptual-tunned embedded zerotree codec

Just to implement the algorithm mention in section | and |
try to get the result as the auther in [2] mentioned. However,
from the result later, we can hardly tell there is any improve-
ment with this method.

I1l. EXPERIMENTS AND RESULTS

The encoded bit file include a 12-byte header which con-
tains:1) the number of wavelet scales; 2) the dimension of
image; 3) the maximum histogram count for the models in



the arithmetic coder; 4) the image mean and 5) the initial
threshold. After that, the entire bit stream is arithmetically
encoded using a single arithmetic coder with an adaptive
model.

The EZW algorithm in this project is applied to the standard
black and white 8 bpp test image, 512 x 512”Lena”.

A. performance of EZW algorithm

Discussion: As mentioned previously, one of the advantages
of EZW is that it encode the image from lossy to lossless in
one algorithm. People at the receiver can choose the quality of
the image by control the bit budget. As the bit rate increases,
you will get more detailed information and of course the
image quality becomes better and better. Figure 5 shows
this procedure. You can clearly observe some block effect
at the lower bit budget, this is due to my implementation
in MATLAB which is very slow doing large number of For
loop. Figure 6 shows the decoded PSNR(Peak Signal-to-Noise
Ratio) vs. bit rate curve. This is quite consist with what we
suppose to be.

Fig. 5. decoded image given different bit budget. Left top: lowest bit
rate(bpp), right bottom: highest bit rate(bpp)
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Fig. 6. The performance of EZW algorithm

B. comparison with PEZ algorithm

Discussion: It is reported[2] that the PEZ removes many
artifacts especially at lower bit rate and the result is shown in
Figure 7. We can see that PEZ provides a lower PSNR and
when | look at the image, | can hardly tell the improvement of
PEZ claimed in[2]. Also | plot the comparison between EZW
and PEZ in Figure 8, which shows that the PEZ always provide
lower PSNR than EZW. Figure 9 shows the decoded images of
these two methods at bpp. The only thing I can tell is the PEZ
decoded image is a little smoother than EZW decoded image,
which is due to the effects of weighting the wavelet coefficients
something like the low pass filter. Therefore, my conclusion
is the performance of PEZ is not that good as claimed.

Original image 0.15bpp, EZW, PSNR=31.56db 0.15bpp, PEZ, PSNR=30.8db

Fig. 7. result obtain from [2]
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Fig. 8. comparison between PEZ and EZW

C. comparison with baseline JPEG

Firstly, I should point out that the baseline JPEG coding
results that | use as the performance benchmark are far from
the best that JPEG offers. Much better performance can be
obtained with JPEg by optimal quantization matrix design,
and coefficient thresholding, while being compatible with the
JPEG syntax.

Figure 10 shows the comparison between the EZW algo-
rithm and baseline JPEG, from which we can see that the
performance of EZW is a little better than the baseline JPEG.

Discussion: It is reported that EZW is a little bettern than
baseline JPEG and my result also shows that. However, as
| said, people always use their best wavelet-based coding



EZW, Bit-rate:0.477bpp, PSNR=28.7db

PEZ, Bit-rate:0.48bpp, PSNR=26.93db

Fig. 9. coding example of EZW and PEZ
blue: Baseline JPEG; black: mine EZW; green: others EZW
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Fig. 10. comparison between EZW and baseline JPEG

scheme with the worst DCT-based scheme(baseline JPEG).
This often gives reader a distorted perspective of the issues
involved in image coding. The reason for people still tend to
replace DCT by EZW is not only because the performance
of EZW is a little better, but also due to the many other
advantages of EZW:

« Having all lower bit rate codes of the same image

embedded at the beginning of the bit stream.
« Bits are generated in order of importance
« Encoder can terminate encoding ar any point, allowing a
target rate to be met exactly.

« Suitable for applications with scalability.
In March 1997 a new call for contributions were launched for
the development of a new standard for the compression of still
images, the JPEG 2000. With the release of Final Committee
Draft(FCD) for Part | from ISO/IEC/JTCI/SC29/WGI in April
2000, this new standard emerges into our life. Comparing to
the most popular existing standard JPEG, JPEG 2000 provides
the following advantages:

+ ROI(Region of Interest)

« Error resilience

« Progression orders

o Lossy and lossless in one system

« Better compression at low bit-rates

« Better ar compund images and graphics

Two wavelet filters are used in JPEG2000 Part I. The daub97
wavelet which contain floating filter coefficients is used for
lossy coding. The integer wavelet 5/3 is used for both lossless
and lossy.

JPEG2000 offers performance superior to the current stan-
dards at low bit-rates(e.g. below 0.25bpp). Figure 11 compare
the performance between JPEG and JPEG2000 at the same bit-
rate on the same image. As you can see, the JPEG compressed
image is visually unacceptable(obvious block effect) while the
JPEG2000 compressed image is pretty good.
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JPEG at 0.125bpp

JPEG2000 at 0.125bpp

Fig. 11. comparison between JPEG and JPEG2000 at the same bit-rate

IV. CONCLUSION

From the results above we can see that the performance
of the original EZW is a little better than the baseline JPEG,
which is the worst one of JPEG. This oftengives people a
distortive perspective of the issues involved in image coding.
The main factors in image coding are the quantizer and entropy
coder rather than the difference between the wavelet transform
and the DCT. However, people still intend to replace the
DCT with the EZW is not only because of the superiority
of the wavelet transform, but also for its other features: 1) Ze-
rotree structure, which provides substantial coding gains over
the first-order entropy for significance maps; 2) Successive-
approximation, which allows the encoding or decoding to stop
at any point; 3)Adaptive arithmetic coding, which allows the
entropy coder to incorporate learning into the bitstream itself.
User can choose a bit rate and encode the image to exactly
the desired bit rate. Furthermore, since no training of any
kind is required, the algorithm is fairly general and performs
remarkably well with most types of images.
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